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Recent Results in Astrostatistics  

1.  Fast algorithms: n-point, 
friends-of-friends, theory 

2. Software: databases 
3. Statistical methodology: 

new ML methods, ML with 
measurement errors 



Core methods of 
statistics / machine learning / mining 

¥  Querying:  spherical range-search O(N), orthogonal range-search O(N), 
spatial join O(N2), nearest-neighbor O(N), all-nearest-neighbors O(N2) 

¥  Density estimation:  mixture of Gaussians, kernel density estimation O(N2), 
kernel conditional density estimation O(N3)  

¥  Regression:  linear regression, kernel regression O(N2), Gaussian process 
regression O(N3) 

¥  Classification:  decision tree, nearest-neighbor classifier O(N2), 
nonparametric Bayes classifier O(N2), support vector machine O(N3) 

¥  Dimension reduction:  principal component analysis, non-negative matrix 
factorization, kernel PCA O(N3), maximum variance unfolding O(N3) 

¥  Outlier detection:  by density estimation or dimension reduction 
¥  Clustering:  by density estimation or dimension reduction, k-means, mean-

shift segmentation O(N2), hierarchical (FoF) clustering O(N3) 
¥  Time series analysis:  Kalman filter, hidden Markov model, trajectory 

tracking O(Nn) 
¥  Feature selection and causality: LASSO, L1 SVM, Gaussian graphical 

models, discrete graphical models 
¥  2-sample testing and matching:  bipartite matching O(N3), n-point 

correlation O(Nn)  



Now pretty fastÉ 

¥  Querying:  spherical range-search O(logN)*,  orthogonal range-search 
O(logN)*,  spatial join O(N)*, nearest-neighbor O(logN),  all-nearest-
neighbors O(N) 

¥  Density estimation:  mixture of Gaussians, kernel density estimation O(N), 
kernel conditional density estimation O(Nlog3 )* 

¥  Regression:  linear regression, kernel regression O(N), Gaussian process 
regression O(N)* 

¥  Classification:  decision tree, nearest-neighbor classifier O(N), 
nonparametric Bayes classifier O(N)*, support vector machine O(N)/O(N2) 

¥  Dimension reduction:  principal component analysis, non-negative matrix 
factorization, kernel PCA O(N)*, maximum variance unfolding O(N)* 

¥  Outlier detection:  by density estimation or dimension reduction 
¥  Clustering:  by density estimation or dimension reduction, k-means, mean-

shift segmentation O(N), hierarchical (FoF) clustering O(NlogN)  
¥  Time series analysis:  Kalman filter, hidden Markov model, trajectory 

tracking O(Nlogn )* 
¥  Feature selection and causality: LASSO, L1 SVM, Gaussian graphical 

models, discrete graphical models 
¥  2-sample testing and matching:  bipartite matching O(N)**, n-point 

correlation O(Nlogn )*  



4 main computational bottlenecks: 
N-body,  graphical models,  linear algebra,  optimization 

¥  Querying:  spherical range-search O(N), orthogonal range-search O(N), 
spatial join O(N2), nearest-neighbor O(N), all-nearest-neighbors O(N2) 

¥  Density estimation:  mixture of Gaussians, kernel density estimation O(N2), 
kernel conditional density estimation O(N3)  

¥  Regression:  linear regression, kernel regression O(N2), Gaussian process 
regression O(N3) 

¥  Classification:  decision tree, nearest-neighbor classifier O(N2), 
nonparametric Bayes classifier O(N2), support vector machine O(N3) 

¥  Dimension reduction:  principal component analysis, non-negative matrix 
factorization, kernel PCA O(N3), maximum variance unfolding O(N3) 

¥  Outlier detection:  by density estimation or dimension reduction 
¥  Clustering:  by density estimation or dimension reduction, k-means, mean-

shift segmentation O(N2), hierarchical clustering O(N3) 
¥  Time series analysis:  Kalman filter, hidden Markov model, trajectory 

tracking O(Nn) 
¥  Feature selection and causality: LASSO, L1 SVM, Gaussian graphical 

models, discrete graphical models 
¥  2-sample testing and matching:  bipartite matching O(N3), n-point 

correlation O(Nn)  



2-point correlation 

r 

Characterization of an entire distribution? 

ÒHow many pairs  have distance < r ?Ó 

2-point correlation 
function 



The n-point correlation functions 
¥  Spatial inferences: filaments, clusters, voids, 

homogeneity, isotropy, 2-sample testing, É 

¥  Foundation for theory of point processes 
[Daley,Vere-Jones 1972], unifies spatial statistics [Ripley 
1976] 

¥  Used heavily in biostatistics, cosmology, particle 
physics, statistical physics 

2pcf definition: 

3pcf definition: 



3-point correlation 
ÒHow many triples have  
pairwise distances < r ?Ó 

r3 

r1 

r2 

Standard model: n>0 terms  
should be zero! 



How can we count n-tuples efficiently? 

ÒHow many triples have  
pairwise distances < r ?Ó 



Use n trees! 
[Gray & Moore, NIPS 2000] 



ÒHow many valid triangles a-b-c 
(where                              )   

could there be?             

A 

B 

C 

r 

count{A,B,C} = 

? 
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ÒHow many valid triangles a-b-c 
(where                              )   

could there be?             
A 
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Exclusion 

count{A,B,C} = 

0! 



ÒHow many valid triangles a-b-c 
(where                              )   

could there be?             

A B 

C 

count{A,B,C} = 
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ÒHow many valid triangles a-b-c 
(where                              )   

could there be?             

A B 

C 

Inclusion 

count{A,B,C} = 

|A| x |B| x |C| 

r 

Inclusion 

Inclusion 
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3-point runtime 

(biggest previous: 
 20K) 

VIRGO  
simulation data, 
N = 75,000,000 

na•ve: 5x109 sec. 
           (~150 years) 

multi-tree: 55 sec. 
               (exact) 

n=2: O(N) 

n=3: O(Nlog3 ) 

n=4: O(N2) 



New: Compute All Matchers
 Simultaneously! 

Naive - O(Nn)!
(estimated) !

Single bandwidth 
[Gray & Moore 
2000, Moore et 

al. 2000]!

Multi-bandwidth 
[March & Gray in 

prep 2010]!
 new!

2.0 x 107 s! 352.8  s!
56,000!

4.96 s!
71.1!

1.1 x 1011 s! 891.6 s!
1.23 x 108!

13.58 s!
65.6!

2.3 x 1014 s! 14530 s!
1.58 x 1010!

503.6 s!
28.8!

106 points, galaxy simulation data  



Other Approaches 

¥  This is exact 
¥  General Ð the only approach that

 can scale to 3-point and beyond 
¥  FFT and others Ð approximate with

 no clear error bound 
¥  GPU Ð constant factor only, can in

 principle be combined with trees 
¥  Coming soon: large-radius solution 



Friends-of-Friends 
(aka Hierarchical Clustering, aka

 Euclidean Minimum Spanning Tree) 

BoruvkaÕs strategy: 

¥  Boruvka step: Add the
 nearest neighbor of each
 component to the
 spanning forest 

Ð  At most log N Boruvka
 steps to form the MST 

¥  O(T(N) log N) time 

Ð  T(N) is time to perform
 Boruvka step 



DualTreeBoruvka 

¥  Simply BoruvkaÕs algorithm 

¥  Requires at most log N iterations 

Ð  Number of components is halved in each iteration 

¥  Use a dual-tree method to find nearest neighbor pairs 



Dual-Tree FindComponentNeighbors 

¥  All query algorithm 
Ð Amortize work by

 searching for many
 queries 

¥  Finds the nearest
 neighbor pair for
 the component
 containing q, and
 components
 containing
 descendants of q 



Cover Trees 

From [BKL06] 



Cover Trees 

Level i 
Radius: 2i+1 



Cover Trees 

Level i-1 
Radius: 2i 



Cover Trees 

Level i-2 
Radius: 2i-1 



Cover Trees 

Space: O(N) nodes 
Construction: O(N 

log N) 



Experiments 

¥  Implementations:  

Ð DualTreeBoruvka on kd- and cover trees 

Ð Bentley & FriedmanÕs [BF78] single tree
 version of PrimÕs algorithm 

Ð GeoMST2 [NZZ00]: WSPD-based
 implementation of KruskalÕs algorithm 

Ð Naive Boruvka: BoruvkaÕs algorithm with
 neighbors found by brute force 



Results 

Mixture of 10 Gaussians in 3 dimensions  



Results 

Subsets of Sloan Digital Sky Survey, 4 dimensional spectra 



Results 

Top: High-dimensional SDSS spectra 
Bottom: (x,y,z) coordinates from  

 galaxy formation simulation 



Theoretical analysis 

¥  The fastest experimental results , as compared to the
 current best algorithms 

¥  The first application of adaptive algorithm analysis  to
 the EMST problem 

¥  The tightest runtime bound  on the EMST problem:
 achieves lower bound, O(N log N) to within nearly a
 constant factor 



Runtime Proof 

¥  Theorem: For a set S of N points in a metric space
 with expansion constant c, cluster expansion constant
 cp, and linkage expansion constant cl, the
 DualTreeBoruvka algorithm on a cover tree runs in
 time: 

¥  !(N) is inverse of Ackermann function  

Ð Comes from Disjoint-Set data structure 

Ð Grows very slowly: ! (1080) " 5  



FindComponentNeighbors Runtime  

¥  Theorem:  Under the assumptions of the
 previous theorem, the
 FindComponentNeighbors algorithm on
 a cover tree finds the nearest neighbor
 pair for each component in time
 bounded by:  



¥  Base Case: 

Ð  O(N) query nodes, 
Work per query:  

¥  Reference Recursion: 

Ð  Duplication of references bounded by
 treeÕs width and depth bound [cite], 
Max duplication: 

¥  Query Recursion: 

Ð  O(N) explicit query nodes 

¥  TOTAL TIME: 

Algorithm Analysis by Parts 
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Software 

¥  MLPACK (C++)  

Ð First scalable comprehensive ML library 

¥  MLPACK-db (C# ! C++) 
Ð fast data analytics in relational databases 

(SQL Server; on-disk) 

¥  FastML (commercial: Analytics 1305) 
   - Very-large-scale data (parallel, streaming) 



MLPACK-db 

¥  Modification of fastlib (library) to allow for
 loadDB and saveDB to access databases. 

¥  We use a library UnixODBC which lets you
 connect to databases(MySQL, MSSQL,
 Postgres etc) using a neat API 

¥  UnixODBC provides a neat set of
 abstractions that lets you talk to
 databases from C, C++, Python et. al in
 Unix environments. 



Fast Tree-based Algorithms 
in Databases 

Framework Essentials: 

  Build kD-Tree index on your table 

  Data isn't copied 

  Complexity hidden from user 

  Simple queries to the server for ML functions 
  Exec dbo.createKdTree(<tableName>, <treeName>); 

  Exec dbo.getNearestNeighbors(<treeName>, <results>); 

  Extensible Ð Easy to write new ML methods. 



Tree Strategy 

  Form a cluster index on a spatial key 
  Use it to quickly access spatially local data 
  Also store tree nodes in a relational table 

  Problem: 
  How to find the spatial keys? 
  E.g. how to build the tree? 



kD-tree construction 

¥  Take 1 

Table scan 

Table scan 

Table scan Table scan 

In memory 
tree 

In memory 
tree 

In memory 
tree 

Table scan 

Table scan Table scan 

In memory 
tree 

In memory 
tree 

2 N/M O(N) = O(N2) 



O(N log^2 N) 

kD-tree construction 

¥  Take 2 

Table scan 

Table scan 

Table scan 

In memory 
tree 

In memory 
tree 

In memory 
tree 

In memory 
tree 

In memory 
tree 



kD-tree construction 

¥  Take 3 
  Bottleneck: Table scans during building top part of the tree 

Solution: Hybrid tree structure 

  Use Morton Z-curve to structure data (computed in one pass) 
  Load large amounts of spatially local data into memory 

  Build a in-memory kD-tree for each chunk 
  Build the (small) top tree by combining these sub-trees 



Morton Z-order 

http://en.wikipedia.org/wiki/File:Z-curve.svg 
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Assign Morton Z-order ids  
and build clustered index  

on Z-id 

Tree Construction Ð Assign and Index by Z-Curve 

Clustered Index Sorts by 
Z-Curve Value 
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Fits in buffer.  
Build KD-Tree 

http://graphics.stanford.edu/courses/cs368-00-spring/TA/manuals/CGAL/ref-manual2/SearchStructures/kdtree.gif 

Sub tree 1 

Sub tree 2 

Write 
to DB 

Write 
to DB 

Fits in buffer.  
Build KD-Tree 

Sub tree n 

Write 
to DB 

Tree Construction Ð Sub Trees 



Sub trees 

Write to 
DB 

Other Concerns 

-  Assignment of node 
keys 

-  Algorithm-specific 
statistics computed for 

each node 

Tree Construction Ð Top Tree 

Complexity: 3 table scans 



KD-tree API 

  Tree provides an API for writing new algorithms 

  Manages memory with cache for indexed data 
and tree nodes 

  Objectives: 

  Minimize the number of SQL queries 
  Users don't manage memory themselves 



Framework 

kD-tree 

Database 

Algorithm 

Node cache Data cache 

Get  
data/node 

Data/node 

Cache miss Cache miss 

Get node 

Cache hit 
Cache hit 

Get data 

Read DB 



KDE  



2-point 



MLPACK-db vs Na•ve: 
All Nearest Neighbors 

No. of points MLDB (Dual 
tree) 

Naive 

40,000 8 seconds 159 seconds 

200,000 43 seconds 3480 seconds 

2,000,000 297 seconds 80 hours 

10,000,000 29 mins 27 sec 74 days  

20,000,000 58mins 48sec 280 days 

40,000,000 112m 32 sec 2 years 
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New ML Methods 

¥  Dimensionality reduction:  rank-preserving
 manifold learning (2008), convex
/isometric NMF (2009) 

¥  Density estimation: submanifold kernel
 density estimation (2010), convex
 adaptive kernel estimation (2010) 

¥  Time series: functional ICA (2009), kernels
 for time series models (2010) 

¥  etc 



Measurement Errors 

¥  Common approach in nonparametric
 setting 
Ð Assume an ÒadditiveÓ error model 

   X=U + # 

¥  U: Noise-free data 
¥  #: I.i.d. noise 

¥  X: Measured, noisy data 

Ð The PDF of X is the convolution of those of U
 and # 

Ð Use kernel-based approaches with a
 Òdeconvolved kernelÓ 



Measurement Errors 

¥  The deconvolution approach is known to
 be consistent, with good asymptotic rates 

¥  However, it has drawbacks 
Ð Hard to deal with non-i.i.d. noise 
Ð The additive model is not necessarily justified

 for real life applications 



Measurement Errors: A new approach 

¥  Two distinctive features 
Ð A generative model of noisy data, instead of

 additive noise 
Ð Treating each measurement as a PDF 

¥  Advantages: 
Ð Natural way to deal with non-i.i.d. noise 
Ð Alternative noise model is a new framework

 for measurement errors, could possibly
 model real life data more accurately 



Measurement Errors: Preliminary Tests 



Measurement Errors: Decreased Error 



Measurement Errors: A new approach 

¥  Preliminary results, observations: 
Ð When evaluated on small synthetic data sets, the

 method outperforms regular Nadaraya-Watson
 regression (bandwidth is taken to zero with the
 optimal rate for NWR). 

Ð  Initial explorations suggest a consistent estimator
 may be provably non-existent in the new
 framework. The ultimate aim would be to obtain
 the best asymptotic accuracy possible. 

Ð The new framework opens the door to other
 approaches.  



The end 

¥  You can now use many of the state-of-the-
art data analysis methods on large 
datasets 

¥  Talk to meÉ  I have a lot of problems 
(ahem) but always want more! 

Alexander Gray agray@cc.gatech.edu 
www.fast-lab.org  


