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Recent Results in Astrostatistics

1. Fast algorithms: n-point,
friends-of-friends, theory

2. Software: databases

3. Statistical methodology:
new ML methods, ML with
measurement errors




Core methods of

statistics / machine learning / mining
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Querying: spherical range-search O(N), orthogonal range-search OgN),
spatial join O(N?), nearest-neighbor O(N), all-nearest-neighbors O(N?)

Density estimation: mixture of Gaussians, kernel density estimation O(N?),
kernel conditional density estimation O(N?3)

Regression: linear regression, kernel regression O(N?), Gaussian process
regression O(N?3)

Classification: decision tree, nearest-neighbor classifier O(N?),
nonparametric Bayes classifier O(N?), support vector machine O(N3)

Dimension reduction: principal component analysis, non-negative matrix
factorization, kernel PCA O(N?), maximum variance unfolding O(N3)

Outlier detection: by density estimation or dimension reduction

Clustering: by density estimation or dimension reduction, k-means, mean-
shift segmentation O(N?), hierarchical (FoF) clustering O(N?)

Time series analysis: Kalman filter, hidden Markov model, trajectory
tracking O(N")

Feature selection and causality: LASSO, L, SVM, Gaussian graphical
models, discrete graphical models

2-sample testing and matching:  bipartite matching O(N3), n-point
correlation O(N")
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Now pretty fastE

Querying: spherical range-search O(logN)*, orthogonal range-search
O(logN)*, spatial join O(N)*, nearest-neighbor O(logN), all-nearest-
neighbors O(N)

Density estimation: mixture of Gaussians, kernel density estimation O(N),
kernel conditional density estimation O(N'093)*

Regression: linear regression, kernel regression O(N), Gaussian process
regression O(N)*

Classification: decision tree, nearest-neighbor classifier O(N),
nonparametric Bayes classifier O(N)*, support vector machine O(N)/O(N?)

Dimension reduction: principal component analysis, non-negative matrix
factorization, kernel PCA O(N)*, maximum variance unfolding O(N)*

Outlier detection: by density estimation or dimension reduction

Clustering: by density estimation or dimension reduction, k-means, mean-
shift segmentation O(N), hierarchical (FoF) clustering O(NlogN)

Time series analysis: Kalman filter, hidden Markov model, trajectory
tracking O(N'ogn)*

Feature selection and causality: LASSO, L; SVM, Gaussian graphical
models, discrete graphical models

2-sample testing and matching:  bipartite matching O(N)**, n-point
correlation O(N'"9n)*



4 main computational bottlenecks:

K K K KK K K K K K

N-body, graphical models, linear algebra, optimization

Querying: spherical range-search O(N), orthogonal range-search OgN),
spatial join O(N?), nearest-neighbor O(N), all-nearest-neighbors O(N?)

Density estimation: mixture of Gaussians, kernel density estimation O(N?),
kernel conditional density estimation O(N?3)

Regression: linear regression, kernel regression O(N?), Gaussian process
regression O(N3)

Classification: decision tree, nearest-neighbor classifier O(N?),
nonparametric Bayes classifier O(N?), support vector machine O(N3)

Dimension reduction: principal component analysis, non-negative matrix
factorization, kernel PCA O(N3), maximum variance unfolding O(N3)

Outlier detection: by density estimation or dimension reduction

Clustering: by density estimation or dimension reduction, k-means, mean-
shift segmentation O(N?), hierarchical clustering O(N3)

Time series analysis: Kalman filter, hidden Markov model, trajectory
tracking O(N")

Feature selection and causality: LASSO, L, SVM, Gaussian graphical
models, discrete graphical models

2-sample testing and matching:  bipartite matching O(N3), n-point
correlation O(N")



Characterization of an entire distribution?

2-point correlation

OHow many pairs have distance < r 20
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The n-point correlation functions

¥ Spatial inferences: filaments, clusters, voids,
homogeneity, isotropy, 2-sample testing, E

¥ Foundation for theory of point processes

[Daley,Vere-Jones 1972], unifies spatial statistics [Ripley
1976]

¥ Used heavily in biostatistics, cosmology, particle
physics, statistical physics

2pcf definition:
dP = XdV,dV,[1+E(r)]

3pcf definition:
dP = XdvdV,dV,-[1+E(r,) + E(ry) + E(1y) + E(1y, 1550 15)]



Standard model: n>0 terms
should be zero!

3-point correlation :
OHow many triples have "<1

pairwise distances < r ?0 :
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How can we count n-tuples efficiently?

OHow many triples have
pairwise distances <r ?0

e
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Use n trees!
[Gray & Moore, NIPS 2000]
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OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be? r
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OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be?
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OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be?

count{A,B,C} =
c ?



OHow many valid triangles a-b-c
(where a€A4, bEB, c€C)

could there be?

[ Inclusion
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(biggest previous:
20K)

00000

CPU time (seconds)
N N

VIRGO
simulation data,

N = 75,000,000

naeve: 5x10° sec.
(~150 years)

multi-tree: 55 sec.
(exact)



New: Compute All Matchers
Simultaneously!

Single bandwidthMulti-bandwidth
Naive -O(N)! [Gray & Moore [March & Gray in
(estimated) ! 2000, Mooreet prep 2010]!

al.2000]! new!
2 point cor. 20 X 16 SI 3528 S' 496 SI
100 matchers 56,0000  71.1!
3 point cor. 11 X lG’l SI 8916 SI 1358 S'
243 matchers 1.23x 16" 65.6!
4 point cor. 23 X 1G’4 SI 14530 SI 5036 S'
216 matchers 1.58 x 1%  28.8!

10° points, galaxy simulation data



Other Approaches

¥ This Is exact

¥ General b the only approach that
can scale to 3-point and beyond

¥ FFT and others D approximate with
no clear error bound

¥ GPU D constant factor only, can In
principle be combined with trees

¥ Coming soon: large-radius solution



Friends-of-Friends
(aka Hierarchical Clustering, aka
Euclidean Minimum Spanning Tree)

BoruvkaOs strategy:

¥ Boruvka step: Add the
nearest neighbor of each

component to the
spanning forest

B At most log N Boruvka
steps to form the MST

¥ O(T(N) log N) time

b T(N) is time to perform
Boruvka step



DualTreeBoruvka

¥ Simply BoruvkaOs algorithm
¥ Requires at most log N iterations
B Number of components is halved in each iteration

¥ Use a dual-tree method to find nearest neighbor pairs

Algorithm 1 Dual-Tree Boruvka (Tree root g)

E=0
while |F| < N —1do
3: FindComponentNeighbors(g,g, €)
E—F Ue
UpdateTree(q)
6: end while




Dual-Tree FindComponentNeighbors

¥ All query algorithm

b Amortize work by

searching for many

gueries

¥ Finds the nearest
neighbor pair for
the component
containing g, and
components
containing
descendants of g

Algorithm 2 FindComponentNeighbors(Cover tree
node gq;, Reference Set R:, Edge set €)

if i = —o0 then
// base case
3: for all g that are descendants of ¢; and r € R; with
r+ g do
if d(g,r) < d(C,) then
d(C,) =d(q,r), e(C,) = (q.r)
6: end if

end for
else if j < i then
9: [/ reference descend
R = {r € Children(r") : v' € R; and r t4 ¢,}

d = min {d((,',l,:l. min {d(g;,r) +2'}, 111»1&{([((;...,7']}

122 Ri-i={re R:d(gj,r)<d+2'+27%}
d(C,) =d
FindComponentNeighbors(g;, ft;_,€)

15: else

end if




Cover Trees
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Cover Trees

o ©
o
© ® @ Space: O(N) nodes
O O o Construction: O(N
(%) log N)
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Experiments

¥ Implementations:

P DualTreeBoruvka on kd- and cover trees

P Bentley & FriedmanOs [BF78] single tree
version of PrimOs algorithm

b GeoMST2 [NZZ00]: WSPD-based
Implementation of KruskalOs algorithm

P Naive Boruvka: BoruvkaOs algorithm with
neighbors found by brute force



Results
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Results
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Results

N dim BEF78 DTB kd | DTB cover
40,000 3840 | 45780.43 | 45825.18 | 15791.37
1,000,000 3 42.54 17.39 333.45

Top: High-dimensional SDSS spectra
Bottom: (X,y,z) coordinates from
galaxy formation simulation




Theoretical analysis

¥ The fastest experimental results , as compared to the
current best algorithms

¥ The first application of adaptive algorithm analysis to
the EMST problem

¥ The tightest runtime bound on the EMST problem:
achieves lower bound, O(N log N) to within nearly a
constant factor



Runtime Proof

¥ Theorem: For a set S of N points in a metric space

with expansion constant c, cluster expansion constant
Cp, and linkage expansion constant ci, the

DualTreeBoruvka algorithm on a cover tree runs in
time:

O(Nlog N a(N)) ~ O(N log N)
¥ I(N) is inverse of Ackermann function

P Comes from Disjoint-Set data structure

B Grows very slowly: ! (1089 "5



FiIndComponentNeighbors Runtime

¥ Theorem:. Under the assumptions of the
previous theorem, the
FindComponentNeighbors algorithm on
a cover tree finds the nearest neighbor
pair for each component in time
bounded by:

O(N a(N)) =~ O(N)



Algorithm Analysis by Parts

Base Case:
Algorithm 2 FindComponentNeighbors(Cover tree
b O(N) query nodes, node g;j, Reference Set R, Edge set e)
Work per query: if { = —co then
// base case
3: for all g that are descendants of ¢; and » € H; with
. r o g do
Reference Recursion: O (max |R;| a(N)) if d(q,r) < d(C,) then
? d(C,) =d(q,r), e(Cy) = (gq,7)
: : 6: end if
b Duplication of references bounded by end for
treeOs width and depth bound [cite], else if j < i then
Max duplication: 9:  // reference descend

R = {r € Children(r") : ' € R; and r t4 ¢}
O(c*N + c® max |R;|log Na(N))
1

Query Recursion: d = min ¢ d(C,), min{d(g;,r) +2'}, min{d(g;,r)}

gy robg;

ici 12: Ri_1={r R:dlgi.v)<d+ 2 + 2_-,-*-'2
b O(N) explicit query nodes o) ={; € R:d(g;,r) < }
FindComponentNeighbors(g;, i;_,¢)
TOTAL TIME: 15: else
O(max|R;|- N - a(N)) |
V) end if




Recent Results in Astrostatistics

1. Fast algorithms: n-point,
friends-of-friends, theory

2. Software: databases

3. Statistical methodology:
new ML methods, ML with
measurement errors




Software

¥ MLPACK (C++)
DFirst scalable comprehensive ML library

¥ MLPACK-db (C# | C++)

Pfast data analytics in relational databases
(SQL Server; on-disk)

¥ FastML (commercial: Analytics 1305)
- Very-large-scale data (parallel, streaming)



MLPACK-db

¥ Modification of fastlib (library) to allow for
loadDB and saveDB to access databases.

¥ We use a library UnixODBC which lets you
connect to databases(MySQL, MSSQL,
Postgres etc) using a neat AP

¥ UnixODBC provides a neat set of
abstractions that lets you talk to
databases from C, C++, Python et. al in
Unix environments.



Fast Tree-based Algorithms
In Databases

Framework Essentials:
e Build kD-Tree index on your table

e Data isn't copied
e Complexity hidden from user

e Simple queries to the server for ML functions

Exec dbo.createKdTree(<tableName>, <treeName>);
Exec dbo.getNearestNeighbors(<treeName>, <results>);

e Extensible b Easy to write new ML methods.



Tree Strategy

e Form a cluster index on a spatial key
e Use It to quickly access spatially local data
e Also store tree nodes in a relational table

e Problem:

How to find the spatial keys?
E.g. how to build the tree?



kD-tree construction

¥ Takel

2 N/M O(N) = O(N?)

In memory In memory In memory In memory In memory
tree tree tree tree tree



kD-tree construction

¥ Take 2

an

O(N log™2 N)

Table scan

Table scan




kD-tree construction

¥ Take 3

e Bottleneck: Table scans during building top part of the tree
Solution: Hybrid tree structure

e Use Morton Z-curve to structure data (computed in one pass)
e Load large amounts of spatially local data into memory

e Build a in-memory kD-tree for each chunk

e Build the (small) top tree by combining these sub-trees



Morton Z-order
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Tree Construction B Assign and Index by Z-Curve

Data set

Id X y Id | X y Z-id

1 24 | 34
4 |24 34 | 0000

2 : :
3 > Assign Morton Z-order ids

3 53 | 3.3 and build clustered index 26 | 3 5 0001
on Z-id

4 1.1 2.2

23 | 53| 33 | 0001
5 | 37 | 93 >

o 1 (11| 22| 0010
°
° Clustered Index Sorts by 93|37/ 93 0011

Z-Curve Value




Id | X y Z-id
4 | 24| 34 | 0000
26 | 3 5 0001
23 | 53| 33 | 0001
1|11 22| 0010
93 | 3.7 | 93 | o011

°

°

°

Tree Construction ® Sub Trees

RN

Fits in buffer. pm> ] jj% —>
Build KD-Tree o P
Sub tree 1
Fits in buffer. + 1o ... —
Build KD-Tree |:> . e |* e A
Y Sub tree 2
°
°
Fits in buffer. 1 . —>
Build KD-Tree |:> o« o ‘. .
Sub tree n

http://graphics.stanford.edu/courses/cs368-00-spring/TA/manuals/CGAL/ref-manual2/SearchStructures/kdtree.gif

Write
to DB

Write
to DB

Write
to DB



Tree Construction B Top Tree

=—=> Write to
DB

Other Concerns

- Assignment of node

keys
- Algorithm-specific
statistics computed for

each node

Sub trees

Complexity: 3 table scans



KD-tree API

e Tree provides an API for writing new algorithms

Manages memory with cache for indexed data
and tree nodes

e Objectives:
Minimize the number of SQL queries
Users don't manage memory themselves
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Log (Time in Sec)

KDE

Kernel Density Estimate Runtime
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Log (Time in Sec)

2-point

6Two Point Correlation Radius = 0.0011
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MLPACK-db vs Naeve:
All Nearest Neighbors

No. of points MLDB (Dual Naive
tree)

40,000 8 seconds 159 seconds
200,000 43 seconds 3480 seconds
2,000,000 297 seconds 80 hours

10,000,000 29 mins 27 sec | /4 days

20,000,000 58mins 48sec 280 days

40,000,000 112m 32 sec 2 years
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New ML Methods

¥ Dimensionality reduction: rank-preserving
manifold learning (2008), convex
/isometric NMF (2009)

¥ Density estimation: submanifold kernel
density estimation (2010), convex
adaptive kernel estimation (2010)

¥ Time series: functional ICA (2009), kernels
for time series models (2010)

¥ etc



Measurement Errors

¥ Common approach in nonparametric
setting

P Assume an OadditiveO error model
X=U + #
¥ U: Noise-free data
¥#: 1.1.d. noise
¥ X: Measured, noisy data

P The PDF of X is the convolution of those of U
and #

b Use kernel-based approaches with a
Odeconvolved kernelO



Measurement Errors

¥ The deconvolution approach is known to
be consistent, with good asymptotic rates

¥ However, it has drawbacks

P Hard to deal with non-i.1.d. noise

P The additive model is not necessatrily justified
for real life applications



Measurement Errors: A new approach

¥ Two distinctive features

b A generative model of noisy data, instead of
additive noise

b Treating each measurement as a PDF

¥ Advantages:
b Natural way to deal with non-1.i.d. noise

b Alternative noise model is a new framework
for measurement errors, could possibly
model real life data more accurately



Measurement Errors: Preliminary Tests




Measurement Errors: Decreased Error
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Measurement Errors: A new approach

¥ Preliminary results, observations:

Db When evaluated on small synthetic data sets, the
method outperforms regular Nadaraya-Watson
regression (bandwidth is taken to zero with the
optimal rate for NWR).

P Initial explorations suggest a consistent estimator
may be provably non-existent in the new
framework. The ultimate aim would be to obtain
the best asymptotic accuracy possible.

P The new framework opens the door to other
approaches.



The end

¥ You can now use many of the state-of-the-
art data analysis methods on large
datasets

¥ Talk to meE | have a lot of problems
(ahem) but always want more!




