Recent Results in Astrostatistics

Georgia Institute of Technology
College of Computing

FASTIab: Fundamental Algorithmic and Statistical Tools Laboratory

The FASTIab

Fundamental Algorithmic and Statistical Tools Laboratory
www.fast-lab.org

1. Arkadas Ozakin: Research scientist , Math, Physics; PhD Physics
2. Nikolaos Vasiloglou: Visiting scholar , EE; PhD EE

3. Abhimanyu Aditya: Affiliate , CS; MS CS

4. Dong Ryeol Lee: PhD student , CS + Math

5. Ryan Riegel: PhD student , CS + Math

6. Sooraj Bhat: PhD student , CS

7. Wei Guan: PhD student , CS

8. Nishant Mehta: PhD student , CS

9. Parikshit Ram: PhD student , CS + Math
10. William March: PhD student , Math + CS
11. Hua Ouyang: PhD student , CS

12. Ravi Sastry: PhD student , CS

13. Long Tran: PhD student , CS

14. Ryan Curtin: PhD student , EE

15. Ailar Javadi: PhD student , EE

+ 5-10 MS students

The FASTIab

Fundamental Algorithmic and Statistical Tools Laboratory
www.fast-lab.org

1. Arkadas Ozakin: Research scientist , Math, Physics; PhD Physics
2. Nikolaos Vasiloglou: Visiting scholar , EE; PhD EE
3. Abhimanyu Aditya: Affiliate , CS; MS CS

4 Dong Ryeol Lee: PhD student , CS + Math
5. Ryan Riegel: PhD student , CS + Math
6. Sooraj Bhat: PhD student , CS

7 Wei Guan: PhD student , CS

8. Nishant Mehta: PhD student , CS

9. Parikshit Ram: PhD student , CS + Math
10. William March: PhD student , Math + CS
11. Hua Ouyang: PhD student , CS

12. Ravi Sastry: PhD student , CS

13. Long Tran: PhD student , CS

14. Ryan Curtin: PhD student , EE

15. Ailar Javadi: PhD student , EE

+ 5-10 MS students

Recent Results in Astrostatistics

1. Fast algorithms: n-point,
friends-of-friends, theory

2. Software: databases

3. Statistical methodology:
new ML methods, ML with
measurement errors

Core methods of

statistics / machine learning / mining

K K K KK K K K K K

Querying: spherical range-search O(N), orthogonal range-search OgN),
spatial join O(N?), nearest-neighbor O(N), all-nearest-neighbors O(N?)

Density estimation: mixture of Gaussians, kernel density estimation O(N?),
kernel conditional density estimation O(N?3)

Regression: linear regression, kernel regression O(N?), Gaussian process
regression O(N?3)

Classification: decision tree, nearest-neighbor classifier O(N?),
nonparametric Bayes classifier O(N?), support vector machine O(N3)

Dimension reduction: principal component analysis, non-negative matrix
factorization, kernel PCA O(N?), maximum variance unfolding O(N3)

Outlier detection: by density estimation or dimension reduction

Clustering: by density estimation or dimension reduction, k-means, mean-
shift segmentation O(N?), hierarchical (FoF) clustering O(N?)

Time series analysis: Kalman filter, hidden Markov model, trajectory
tracking O(N")

Feature selection and causality: LASSO, L, SVM, Gaussian graphical
models, discrete graphical models

2-sample testing and matching: bipartite matching O(N3), n-point
correlation O(N")

K K K KK K K K K

Now pretty fastE

Querying: spherical range-search O(logN)*, orthogonal range-search
O(logN)*, spatial join O(N)*, nearest-neighbor O(logN), all-nearest-
neighbors O(N)

Density estimation: mixture of Gaussians, kernel density estimation O(N),
kernel conditional density estimation O(N'093)*

Regression: linear regression, kernel regression O(N), Gaussian process
regression O(N)*

Classification: decision tree, nearest-neighbor classifier O(N),
nonparametric Bayes classifier O(N)*, support vector machine O(N)/O(N?)

Dimension reduction: principal component analysis, non-negative matrix
factorization, kernel PCA O(N)*, maximum variance unfolding O(N)*

Outlier detection: by density estimation or dimension reduction

Clustering: by density estimation or dimension reduction, k-means, mean-
shift segmentation O(N), hierarchical (FoF) clustering O(NlogN)

Time series analysis: Kalman filter, hidden Markov model, trajectory
tracking O(N'ogn)*

Feature selection and causality: LASSO, L; SVM, Gaussian graphical
models, discrete graphical models

2-sample testing and matching: bipartite matching O(N)**, n-point
correlation O(N'"9n)*

4 main computational bottlenecks:

K K K KK K K K K K

N-body, graphical models, linear algebra, optimization

Querying: spherical range-search O(N), orthogonal range-search OgN),
spatial join O(N?), nearest-neighbor O(N), all-nearest-neighbors O(N?)

Density estimation: mixture of Gaussians, kernel density estimation O(N?),
kernel conditional density estimation O(N?3)

Regression: linear regression, kernel regression O(N?), Gaussian process
regression O(N3)

Classification: decision tree, nearest-neighbor classifier O(N?),
nonparametric Bayes classifier O(N?), support vector machine O(N3)

Dimension reduction: principal component analysis, non-negative matrix
factorization, kernel PCA O(N3), maximum variance unfolding O(N3)

Outlier detection: by density estimation or dimension reduction

Clustering: by density estimation or dimension reduction, k-means, mean-
shift segmentation O(N?), hierarchical clustering O(N3)

Time series analysis: Kalman filter, hidden Markov model, trajectory
tracking O(N")

Feature selection and causality: LASSO, L, SVM, Gaussian graphical
models, discrete graphical models

2-sample testing and matching: bipartite matching O(N3), n-point
correlation O(N")

Characterization of an entire distribution?

2-point correlation

OHow many pairs have distance < r 20
N

2 \ I(x,—x.<r) -

[J#I .

105; T IIIIIIII T T T TTTTT T E /

10+ ;-_71_
1000
~ 100 -

w10 g

2-point correlation
function gfég_ i

The n-point correlation functions

¥ Spatial inferences: filaments, clusters, voids,
homogeneity, isotropy, 2-sample testing, E

¥ Foundation for theory of point processes

[Daley,Vere-Jones 1972], unifies spatial statistics [Ripley
1976]

¥ Used heavily in biostatistics, cosmology, particle
physics, statistical physics

2pcf definition:
dP = XdV,dV,[1+E(r)]

3pcf definition:
dP = XdvdV,dV,-[1+E(r,) + E(ry) + E(1y) + E(1y, 1550 15)]

Standard model: n>0 terms
should be zero!

3-point correlation :
OHow many triples have "<1

pairwise distances < r ?0 :

ii il(éif <r1)](5jk<r2)](5ki <)

I =i k=j=i

How can we count n-tuples efficiently?

OHow many triples have
pairwise distances <r ?0

e
e g
[T

Use n trees!
[Gray & Moore, NIPS 2000]

OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be? r
. : /\

Dy q
o ? J
o count{A,B,C} =
@) .‘ ® ?
P . o .
B . ®

OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be? r
. : /\

o ‘

@,
F 1 count{A,B,C} =

P e o [count{A,B,C.left}
e . ol ‘ .o

B . ©® count{A,B,C.right }

OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be? r
. : /\

® | count{A,B,C} =
» .‘ N Count{A,B,Cleft}

=
e +

@
B — j count{A,B,C.right }

OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be? r
S

B
— @
<«—> ®

» count{A,B,C} =

I < 2
o

OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be?

B
— @
<«—> ®

® count{A,B,C} =

I - 0!
{ Exclus% e - *

OHow many valid triangles a-b-c
(where a€4, bEB, c€C)

could there be?

count{A,B,C} =
c ?

OHow many valid triangles a-b-c
(where a€A4, bEB, c€C)

could there be?

[Inclusion

A B
=

[Inclusﬁ

count{A,B,C} =
[Al X [B] x |C]

Inclusion]

(biggest previous:
20K)

00000

CPU time (seconds)
N N

VIRGO
simulation data,

N = 75,000,000

naeve: 5x10° sec.
(~150 years)

multi-tree: 55 sec.
(exact)

New: Compute All Matchers
Simultaneously!

Single bandwidthMulti-bandwidth
Naive -O(N)! [Gray & Moore [March & Gray in
(estimated) ! 2000, Mooreet prep 2010]!

al.2000]! new!
2 point cor. 20 X 16 SI 3528 S' 496 SI
100 matchers 56,0000 71.1!
3 point cor. 11 X lG’l SI 8916 SI 1358 S'
243 matchers 1.23x 16" 65.6!
4 point cor. 23 X 1G’4 SI 14530 SI 5036 S'
216 matchers 1.58 x 1% 28.8!

10° points, galaxy simulation data

Other Approaches

¥ This Is exact

¥ General b the only approach that
can scale to 3-point and beyond

¥ FFT and others D approximate with
no clear error bound

¥ GPU D constant factor only, can In
principle be combined with trees

¥ Coming soon: large-radius solution

Friends-of-Friends
(aka Hierarchical Clustering, aka
Euclidean Minimum Spanning Tree)

BoruvkaOs strategy:

¥ Boruvka step: Add the
nearest neighbor of each

component to the
spanning forest

B At most log N Boruvka
steps to form the MST

¥ O(T(N) log N) time

b T(N) is time to perform
Boruvka step

DualTreeBoruvka

¥ Simply BoruvkaOs algorithm
¥ Requires at most log N iterations
B Number of components is halved in each iteration

¥ Use a dual-tree method to find nearest neighbor pairs

Algorithm 1 Dual-Tree Boruvka (Tree root g)

E=0
while |F| < N —1do
3: FindComponentNeighbors(g,g, €)
E—F Ue
UpdateTree(q)
6: end while

Dual-Tree FindComponentNeighbors

¥ All query algorithm

b Amortize work by

searching for many

gueries

¥ Finds the nearest
neighbor pair for
the component
containing g, and
components
containing
descendants of g

Algorithm 2 FindComponentNeighbors(Cover tree
node gq;, Reference Set R:, Edge set €)

if i = —o0 then
// base case
3: for all g that are descendants of ¢; and r € R; with
r+ g do
if d(g,r) < d(C,) then
d(C,) =d(q,r), e(C,) = (q.r)
6: end if

end for
else if j < i then
9: [/ reference descend
R = {r € Children(r") : v' € R; and r t4 ¢,}

d = min {d((,',l,:l. min {d(g;,r) +2'}, 111»1&{([((;...,7']}

122 Ri-i={re R:d(gj,r)<d+2'+27%}
d(C,) =d
FindComponentNeighbors(g;, ft;_,€)

15: else

end if

Cover Trees

P o
© o ©
() ¢ P From [BKLO6]
® o ©
® ®
® ®

Cover Trees

P @
® s 0
' Level |
| ‘ o Radius: 2'*1
® 5 »
® @
@ @

Cover Trees

P @
& .
‘ Level I-1
’ © & Radius: 2
o o ®
¢ e
o O

Cover Trees

C O
, \ ‘ Level I-2
o ¥ ¢ < Radius: 21
® ",
o &

|
) .

Cover Trees

o ©
o
© ® @ Space: O(N) nodes
O O o Construction: O(N
(%) log N)
o [+
o)
o o

Experiments

¥ Implementations:

P DualTreeBoruvka on kd- and cover trees

P Bentley & FriedmanOs [BF78] single tree
version of PrimOs algorithm

b GeoMST2 [NZZ00]: WSPD-based
Implementation of KruskalOs algorithm

P Naive Boruvka: BoruvkaOs algorithm with
neighbors found by brute force

Results

10
10°
10’
@ 10?
£
= 10’
o === DTB (kd-tree) 1
10 ==@== DTB (cover tree) | i
= GeoMST2]
107 NaiveBoruvka s
mms== Bentley-Friedmar 3
, -==NlogN]
10— i sl L Y P L
10° 10° 10° 10° 10’

Number of points

Mixture of 10 Gaussians in 3 dimensions

Results

10
10°
10’
@ 107
£
= 10°
o === DTB (kd-tree) 1
10 ==@== DTB (cover tree) | i
mges GeoMST2]
107 Naive Boruvka | |
s Bentley-Friedman
- ==NlogN]
10_ 1 Ty | L Y L P
10° 10° 10° 10° 10’

Number of points

Subsets of Sloan Digital Sky Survey, 4 dimensional spectra

Results

N dim BEF78 DTB kd | DTB cover
40,000 3840 | 45780.43 | 45825.18 | 15791.37
1,000,000 3 42.54 17.39 333.45

Top: High-dimensional SDSS spectra
Bottom: (X,y,z) coordinates from
galaxy formation simulation

Theoretical analysis

¥ The fastest experimental results , as compared to the
current best algorithms

¥ The first application of adaptive algorithm analysis to
the EMST problem

¥ The tightest runtime bound on the EMST problem:
achieves lower bound, O(N log N) to within nearly a
constant factor

Runtime Proof

¥ Theorem: For a set S of N points in a metric space

with expansion constant c, cluster expansion constant
Cp, and linkage expansion constant ci, the

DualTreeBoruvka algorithm on a cover tree runs in
time:

O(Nlog N a(N)) ~ O(N log N)
¥ I(N) is inverse of Ackermann function

P Comes from Disjoint-Set data structure

B Grows very slowly: ! (1089 "5

FiIndComponentNeighbors Runtime

¥ Theorem:. Under the assumptions of the
previous theorem, the
FindComponentNeighbors algorithm on
a cover tree finds the nearest neighbor
pair for each component in time
bounded by:

O(N a(N)) =~ O(N)

Algorithm Analysis by Parts

Base Case:
Algorithm 2 FindComponentNeighbors(Cover tree
b O(N) query nodes, node g;j, Reference Set R, Edge set e)
Work per query: if { = —co then
// base case
3: for all g that are descendants of ¢; and » € H; with
. r o g do
Reference Recursion: O (max |R;| a(N)) if d(q,r) < d(C,) then
? d(C,) =d(q,r), e(Cy) = (gq,7)
: : 6: end if
b Duplication of references bounded by end for
treeOs width and depth bound [cite], else if j < i then
Max duplication: 9: // reference descend

R = {r € Children(r") : ' € R; and r t4 ¢}
O(c*N + c® max |R;|log Na(N))
1

Query Recursion: d = min ¢ d(C,), min{d(g;,r) +2'}, min{d(g;,r)}

gy robg;

ici 12: Ri_1={r R:dlgi.v)<d+ 2 + 2_-,-*-'2
b O(N) explicit query nodes o) ={; € R:d(g;,r) < }
FindComponentNeighbors(g;, i;_,¢)
TOTAL TIME: 15: else
O(max|R;|- N - a(N)) |
V) end if

Recent Results in Astrostatistics

1. Fast algorithms: n-point,
friends-of-friends, theory

2. Software: databases

3. Statistical methodology:
new ML methods, ML with
measurement errors

Software

¥ MLPACK (C++)
DFirst scalable comprehensive ML library

¥ MLPACK-db (C# | C++)

Pfast data analytics in relational databases
(SQL Server; on-disk)

¥ FastML (commercial: Analytics 1305)
- Very-large-scale data (parallel, streaming)

MLPACK-db

¥ Modification of fastlib (library) to allow for
loadDB and saveDB to access databases.

¥ We use a library UnixODBC which lets you
connect to databases(MySQL, MSSQL,
Postgres etc) using a neat AP

¥ UnixODBC provides a neat set of
abstractions that lets you talk to
databases from C, C++, Python et. al in
Unix environments.

Fast Tree-based Algorithms
In Databases

Framework Essentials:
e Build kD-Tree index on your table

e Data isn't copied
e Complexity hidden from user

e Simple queries to the server for ML functions

Exec dbo.createKdTree(<tableName>, <treeName>);
Exec dbo.getNearestNeighbors(<treeName>, <results>);

e Extensible b Easy to write new ML methods.

Tree Strategy

e Form a cluster index on a spatial key
e Use It to quickly access spatially local data
e Also store tree nodes in a relational table

e Problem:

How to find the spatial keys?
E.g. how to build the tree?

kD-tree construction

¥ Takel

2 N/M O(N) = O(N?)

In memory In memory In memory In memory In memory
tree tree tree tree tree

kD-tree construction

¥ Take 2

an

O(N log™2 N)

Table scan

Table scan

kD-tree construction

¥ Take 3

e Bottleneck: Table scans during building top part of the tree
Solution: Hybrid tree structure

e Use Morton Z-curve to structure data (computed in one pass)
e Load large amounts of spatially local data into memory

e Build a in-memory kD-tree for each chunk

e Build the (small) top tree by combining these sub-trees

Morton Z-order

X: '
0 1 2 3 1 4 5 6 7
000 001 010 011 1 100 101 110 111
|
I
"0‘;0 000000 000001 © 000100 000101:010000 010001 - 010100 010101
I
|
0:” 000010 000011 000110 0oou|:0|oo|0 010011 010110 010111
|
|
0‘:0 001000 001001 ' 001100 001101:011000 011001 011100 011101
|
|
0".’. 001010 001011 001110 001111 'O011010 011011 ' O11110 O11111
I
. e — T e o0 o0 o0 o S0 GD G0 6B OGN =D @ &
4 |
188 100000 100001 . 100100 100101 ' 110000 110001 | 110100 110101
|
|
5 I
l;" 100010 100011 . 100110 100111 ' 110010 110011 | 110110 110111
|
|
6 |
118 101000 101001 101100 101101 1 111000 111001 110100 111101
I
|
7 |
111 101010 101011 101100 XORILD 1 R10OX0 XRDOLTD 1RRIDO QRRLLI
|

http://en.wikipedia.org/wiki/File:Z-curve.svg

Tree Construction B Assign and Index by Z-Curve

Data set

Id X y Id | X y Z-id

1 24 | 34
4 |24 34 | 0000

2 : :
3 > Assign Morton Z-order ids

3 53 | 3.3 and build clustered index 26 | 3 5 0001
on Z-id

4 1.1 2.2

23 | 53| 33 | 0001
5 | 37 | 93 >

o 1 (11| 22| 0010
°
° Clustered Index Sorts by 93|37/ 93 0011

Z-Curve Value

Id | X y Z-id
4 | 24| 34 | 0000
26 | 3 5 0001
23 | 53| 33 | 0001
1|11 22| 0010
93 | 3.7 | 93 | o011

°

°

°

Tree Construction ® Sub Trees

RN

Fits in buffer. pm>] jj% —>
Build KD-Tree o P
Sub tree 1
Fits in buffer. + 1o ... —
Build KD-Tree |:> . e |* e A
Y Sub tree 2
°
°
Fits in buffer. 1 . —>
Build KD-Tree |:> o« o ‘. .
Sub tree n

http://graphics.stanford.edu/courses/cs368-00-spring/TA/manuals/CGAL/ref-manual2/SearchStructures/kdtree.gif

Write
to DB

Write
to DB

Write
to DB

Tree Construction B Top Tree

=—=> Write to
DB

Other Concerns

- Assignment of node

keys
- Algorithm-specific
statistics computed for

each node

Sub trees

Complexity: 3 table scans

KD-tree API

e Tree provides an API for writing new algorithms

Manages memory with cache for indexed data
and tree nodes

e Objectives:
Minimize the number of SQL queries
Users don't manage memory themselves

Get I’%/

Node cach

e

Framework

D-tre

Cache miss

g

N

Database

D
s

~_

Data/node

Get
data/node

Cache miss

~———Data cache

Read DB

-

Algorithm

>

)

(S
\\Get data
Y

Log (Time in Sec)

KDE

Kernel Density Estimate Runtime

(3]
10 =
s
- *
107 F / 3
#
4 s
10 | " 3
f_ 3
2 /_,D
3 *{ B"B
10 7 v E
A |
2 # ’
107} *,» ,
f’r /‘-E
’ '
10T g%
i
10'3 1 ...l-‘|3
10 10° 10 10

Log(DataSet Size (x1000))

— #%— - Naive
---EF-- DualTree

Log (Time in Sec)

2-point

6Two Point Correlation Radius = 0.0011

10
*

G 4 .

10 ¢ * E
/ :
*{;
10°} /(E
*
/!
103 - #’(E
/s
#

2

10 ; 4
¥ 2
/ u)l

10} # 3

& B-"B
103 'l " 1 .E'““',, 1 "13 " L 4 3 31333

10 10° 10 10

Log(DataSize x 1000)

— “#4— - Naive
---E}F-- DualTree

MLPACK-db vs Naeve:
All Nearest Neighbors

No. of points MLDB (Dual Naive
tree)

40,000 8 seconds 159 seconds
200,000 43 seconds 3480 seconds
2,000,000 297 seconds 80 hours

10,000,000 29 mins 27 sec | /4 days

20,000,000 58mins 48sec 280 days

40,000,000 112m 32 sec 2 years

Recent Results in Astrostatistics

1. Fast algorithms: n-point,
friends-of-friends, theory

2. Software: databases

3. Statistical methodology:
new ML methods, ML with
measurement errors

New ML Methods

¥ Dimensionality reduction: rank-preserving
manifold learning (2008), convex
/isometric NMF (2009)

¥ Density estimation: submanifold kernel
density estimation (2010), convex
adaptive kernel estimation (2010)

¥ Time series: functional ICA (2009), kernels
for time series models (2010)

¥ etc

Measurement Errors

¥ Common approach in nonparametric
setting

P Assume an OadditiveO error model
X=U + #
¥ U: Noise-free data
¥#: 1.1.d. noise
¥ X: Measured, noisy data

P The PDF of X is the convolution of those of U
and #

b Use kernel-based approaches with a
Odeconvolved kernelO

Measurement Errors

¥ The deconvolution approach is known to
be consistent, with good asymptotic rates

¥ However, it has drawbacks

P Hard to deal with non-i.1.d. noise

P The additive model is not necessatrily justified
for real life applications

Measurement Errors: A new approach

¥ Two distinctive features

b A generative model of noisy data, instead of
additive noise

b Treating each measurement as a PDF

¥ Advantages:
b Natural way to deal with non-1.i.d. noise

b Alternative noise model is a new framework
for measurement errors, could possibly
model real life data more accurately

Measurement Errors: Preliminary Tests

Measurement Errors: Decreased Error

07
0.6
05!
0.4 ~
03"
0.2 —

0.1+

200 400 600 800 1000

Measurement Errors: A new approach

¥ Preliminary results, observations:

Db When evaluated on small synthetic data sets, the
method outperforms regular Nadaraya-Watson
regression (bandwidth is taken to zero with the
optimal rate for NWR).

P Initial explorations suggest a consistent estimator
may be provably non-existent in the new
framework. The ultimate aim would be to obtain
the best asymptotic accuracy possible.

P The new framework opens the door to other
approaches.

The end

¥ You can now use many of the state-of-the-
art data analysis methods on large
datasets

¥ Talk to meE | have a lot of problems
(ahem) but always want more!

